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Abstract

Differentially private stochastic gradient descent (DP-SGD) trains machine learning (ML)
models with formal privacy guarantees for the training set by adding random noise to gradient
updates. In collaborative learning (CL), where multiple parties jointly train a model, noise
addition occurs either (i) before or (ii) during secure gradient aggregation. The first option is
deployed in distributed DP methods, which require greater amounts of total noise to achieve
security, resulting in degraded model utility. The second approach preserves model utility but
requires a secure multiparty computation (MPC) protocol. Existing methods for MPC noise
generation require tens to hundreds of seconds of runtime per noise sample because of the number
of parties involved. This makes them impractical for collaborative learning, which often requires
thousands or more samples of noise in each training step.

We present a novel protocol for MPC noise sampling tailored to the collaborative learning
setting. It works by constructing an approximation of the distribution of interest which can
be efficiently sampled by a series of table lookups. Our method achieves significant runtime
improvements and requires much less communication compared to previous work, especially at
higher numbers of parties. It is also highly flexible – while previous MPC sampling methods
tend to be optimized for specific distributions, we prove that our method can generically sample
noise from statistically close approximations of arbitrary discrete distributions. This makes it
compatible with a wide variety of DP mechanisms. Our experiments demonstrate the efficiency
and utility of our method applied to a discrete Gaussian mechanism for differentially private
collaborative learning. For 16 parties, we achieve a runtime of 0.06 seconds and 11.59 MB total
communication per sample, a 230× runtime improvement and 3× less communication compared
to the prior state-of-the-art [34] for sampling from discrete Gaussian distribution in MPC.

1 Introduction
Differentially private stochastic gradient descent (DP-SGD) [1] is a model training algorithm
which adds calibrated amounts of random noise to gradient updates in order to obtain rigorous
differential privacy (DP) guarantees [8] for the training data. In collaborative learning (CL)
algorithms [21, 25, 14, 20], which allow many parties to work together to train a model, there is
no central party who is trusted to add the noise. Adapting DP-SGD to this setting requires the
addition of noise either (i) before or (ii) during secure aggregation of gradient updates.
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Table 1: Comparison with prior work [34]. Comparison of the time and total communication
required per sample from the discrete Gaussian distribution with a standard deviation of 967, as
used in our DP-CL experiments. Prior work is evaluated using GMW protocol with triple generation
using OT-based (semi2k) and HE-based (temi) protocols.

Parties Ours Prior (OT) Prior (HE)

2
LAN (s) 0.09 0.27 1.24
WAN (s) 0.1 598 631

Comm. (MB) 0.72 0.29 0.29

4
LAN (s) 0.07 15.05 3.36
WAN (s) 0.08 1.457K 1.459K

Comm. (MB) 1.91 6.82 1.67

8
LAN (s) 0.06 27.49 6.57
WAN (s) 0.08 2.612K 2.613K

Comm. (MB) 3.3 31.51 7.71

16
LAN (s) 0.06 50.17 12.78
WAN (s) 0.25 4.942K 4.916K

Comm. (MB) 11.59 134.36 32.91

The former option, utilized in distributed DP [14, 10, 19, 20] methods, is relatively straightforward:
each party adds some noise locally to their update. This confers the aggregated output with a DP
guarantee due to the combined noise. However, this approach introduces a vulnerability. If multiple
parties collude by sharing their local noise values, they can subtract them from the aggregated
output to partially de-noise it. To compensate for this attack each party must add a larger amount
of noise, proportional to the number of expected colluding adversaries. This extra noise results in
degraded model utility compared to the centralized setting.

Alternatively, DP noise may be sampled inside of a secure multiparty computation (MPC) protocol
for gradient aggregation. MPC allows a set of parties to compute a function on a pool of private inputs,
while guaranteeing that each party’s input is confidential [5, 22, 34]. Using MPC to sample noise
means that no party views any part of the noise until after it has been combined with the aggregated
updates. As a result, this approach achieves maximal utility in collaborative learning without requiring
a trusted central party. However, it comes at the cost of increased computational overhead.

Existing methods for MPC noise generation are either limited to two-parties [5] or do not scale
well to higher numbers of parties [22, 34]. Runtimes in the tens of seconds per sample with as few
as four parties (Table 1) pose steep limitations on their practicality in the collaborative learning
setting, which may involve tens to hundreds of parties and thousands or more noise samples per
training round.

In this work we present a method for MPC noise sampling with greatly improved scaling to higher
number of parties, making it more suitable for collaborative learning. In addition, unlike previous
MPC noise generation methods which tend to be optimized for particular distributions [5, 22, 34],
our method is highly generic. It can accommodate any discrete distribution with a known probability
mass function, making it versatile to different applications. For example, DP algorithms are an
ongoing area of study. Noise from a variety of different distributions may be utilized in existing and
future work [12].

These advances are made possible by our novel approach to the problem. We present the overview
of our method in Figure 1. Rather than applying generic MPC to compute the sampling algorithm
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Figure 1: Overview of the Method. 1 Sampling Noise for Differential Privacy. Our method
takes as input a target distribution X generically. It finds Y , an approximation of X which is
statistically indistinguishable, and can be sampled using a series of random table lookups which we
call a “dice ensemble”. Algorithm 4 constructs a dice ensemble appropriate to the target distribution.
Then, Protocol 4 can be used to sample Y efficiently in MPC. Our method substantially enhances
scalability to higher numbers of parties while supporting any discrete distribution. 2 Differentially
Private Collaborative Learning. Our method is leveraged with a secure gradient aggregation protocol
to provide a collaborative learning protocol with differential privacy guarantees.

for a distribution of interest X as in previous work [5, 22, 34], our method takes X generically as
input and constructs Y , a statistically close approximation which can be sampled as a series of table
lookups. We then apply an efficient private table lookup protocol to realize an MPC sampler for Y ,
resulting in much more scalable noise generation.

Summary of Contributions. We propose a new method for sampling random noise in MPC
with the following contributions:

• Efficiency. Our method achieves substantial improvements in runtime and communication
compared to previous work, especially at higher numbers of parties. For 32 parties, our method
samples from the discrete Gaussian distribution in 0.21 seconds with 42 MB of total communication,
representing 450× and 13× improvement over previous work respectively (see Table 1). We also
note that our protocol achieves significant improvement even for 4 parties.

• Flexibility. Our method is highly generic. It takes the probability mass function of any discrete
distribution as input, and compiles it into an MPC sampler. We prove that the outputs of our
sampler are statistically indistinguishable from the input distribution.

• Collaborative Learning Benchmarks. We adapt previous work to derive parameter settings
appropriate to differentially private collaborative learning, and benchmark them in terms of
efficiency and model utility. Our experiments show that the reduced noise afforded via MPC
sampling results in models with improved accuracy compared to distributed DP that needs to
account for colluding clients.

• Code. We provide our code at https://github.com/cleverhans-lab/Secure_Noise_Sampling_
DP_CL.

2 Background
2.1 Noise Sampling for Differentially Private Collaborative Learning
The two prior approaches for sampling noise in collaborative learning that are most relevant to our
work are:
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Distributed DP . In this approach [14, 10, 19, 20], parties locally sample noise and use an MPC
protocol for aggregation such that the aggregated noise follows a certain distribution which confers a
DP guarantee. For example, in [20], the authors demonstrate that if each party locally samples a
discrete Gaussian noise independently, the summation of those discrete Gaussian samples forms a
distribution X; they further prove the DP guarantee for the algorithm that adds noise sampled from
X. However, for security against t colluding (out of n parties), each party needs to add noises as if
only n− t parties will sample noise to meet the desired aggregate distribution X. Thus, for high
corruption thresholds, these works add a large amount of noise to the data, reducing the model’s
utility.

DP using MPC . In this setting [5, 22, 34], parties use an MPC protocol to sample from a desired
distribution required for the DP guarantee. These works focus on designing efficient algorithms
or smaller circuits for sampling in MPC from a specific distribution like the Gaussian or Laplace
distributions.

Dwork et al. [10] observe that the generation of a geometric sample can be reduced to independent
Bernoulli samples for each bit with a different bias. For a κ bit Geometric sample with probability p,
the i-th bit bi is defined by Bernoulli sample with probability p2

i
/(1 + p)2

i . [5] use this observation
with their efficient sampling algorithm for biased coins to generate Geometric noise for DP in 2-PC.
They design an efficient oblivious stack algorithm with pop and reset operations in order to hide
the access pattern and avoid iterating for the binary expansion of the bias.

In [4], the authors propose an algorithm for sampling from discrete Gaussian distribution for
differential privacy using Bernoulli, Geometric, and Laplace distribution for central DP applications.
[34] follows a similar structure to the central DP algorithm for sampling from discrete Gaussian
distribution in MPC. They use the method described in [10] to generate geometric samples from
Bernoulli samples. Their main contribution is to improve the sampling of Bernoulli noise when
p = e−γ and γ is private. They observe that this is only required to go from Laplace noise to
Gaussian noise in [4], where γ = a/b and b is public while a is private and has 2κ bits. Thus, they
can sample 2κ biased coins with public biases and combine them according to the bit decomposition
of a. Additionally, they also optimize the acceptance rate when going from the Laplace sample to
the Gaussian sample. Further, [16] improves [34] by updating their Bernoulli sampling algorithm
to use the oblivious stack algorithm from [5].

2.2 Differentially Private Collaborative Learning Algorithms
In a collaborative training setting, two types of granularity for privacy are often considered based
on the nature of the clients: (i) client-level privacy [25, 18, 20], useful for clients like personal
devices (e.g., cellphone) that contains information about one individual; and (ii) data point-level
privacy [21, 14], useful for clients that hold data from many different individuals (e.g., hospitals)
where each individual’s privacy shall be considered.

Federated Learning (FL) [24] is one of the earliest proposed collaborative training methods. In
FL, each client uses local data to obtain a model update and shares it with the server for aggregation.
In this work, we focus on leveraging the proposed method of noise sampling in MPC on FL to protect
data point-level privacy.

Other than FL-based collaborative training methods, another type of DP-CL method involves
querying teacher models trained on local private data to label public data points (with DP). The
labeled pairs are then used to train a centralized student model. Such frameworks include Private
Aggregation of Teach Ensembles (PATE) [28] and Confidential and Private Collaborative (CaPC)
Learning [6]. Our noise sampling in MPC can also be used to obtain the DP guarantees in these
frameworks, for example, by replacing the role of Privacy Guardian (a third-party responsible for
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noise addition) in CaPC.

2.3 DP Fine-Tuning for Soft Prompts
Soft prompts refer to the list of weights prepended to the embeddings of the inputs to language models
(LM). These weights can be learned in the same manner as regular model weights on downstream
tasks, and they can leak private information just as the model weights can. Soft prompts have the
benefit that they are usually low in dimension so the cost of training is also low. Prior work [7] has
demonstrated DP fine-tuning for soft prompts in a centralized manner. In this work, we extend this
approach to a collaborative training scenario.

3 Preliminaries & Notation
3.1 Secure Multiparty Computation
Secure multi-party computation (MPC) enables a group of parties to collaboratively compute a
function f on their private data while revealing nothing beyond the output. The function f is
represented as a circuit C with boolean and/or arithmetic gates that can be evaluated using a generic
MPC protocol. MPC protocols can be designed to achieve different levels of security depending on
the adversarial model. In this work, we focus on the semi-honest security model with all-but-one
corruption. In the semi-honest model, the corrupt parties may collude to infer additional information
without deviating from the protocol. In this work, we use the Boolean to Arithmetic shares protocol
from [17] to realize the functionality for converting Boolean shares of random indices to their bitwise
encryptions. We also use a threshold homomorphic encryption (THE) scheme to enable the parties
to do a majority of the computation non-interactively/locally.

3.2 Representing Approximation Error in Constructed Distributions
Given a discrete, finite sample space Ω, random variable R which maps Ω to R, and a probability
mass function f : R 7→ [0, 1], in this work we are interested in constructing approximations of f .
We will often construct an augmented sample space Ω ∪ {⊥} where ⊥ ̸∈ Ω is a special element
which represents approximation error. Since Ω is discrete and finite, we can always construct
R′ : Ω ∪ {⊥} 7→ R such that R′(⊥) = θ where θ ̸= R(x) for all x ∈ Ω. However, for brevity in the
remainder of the paper we will abuse notation by rendering some probability mass functions with
the signature f : R ∪ {⊥} 7→ [0, 1]. This gives us f(⊥) as convenient shorthand for discussing the
amount of probability mass allocated to this special error element.

3.3 Statistical Indistinguishability
We use a formalization of statistical indistinguishability from [15]. Given two sequences of discrete
distributions parameterized by a statistical security parameter λ, X = (Xλ)λ∈N and Y = (Yλ)λ∈N,
we will use the following formulation of total variation distance, also parameterized by λ:

SDX,Y (λ) :=
1

2
·
∑

z∈0,1∗

∣∣∣Pr [X(1λ) = z
]
− Pr

[
Y (1λ) = z

]∣∣∣ .
We say that X and Y are statistically indistinguishable if SDX,Y (λ) is a negligible function of λ.

That is, if for any polynomial p : N→ R+ there exists an integer N such that for all λ ≥ N we have

SDX,Y (λ) ≤
1

p(λ)
.
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3.4 Discrete Gaussian Distribution
Let scale and location parameter σ, µ > 0. The discrete Gaussian [4] is a probability distribution
supported on the integers Z denoted by NZ(µ, σ

2) and defined as the follows:

∀x ∈ Z, P
X←NZ(µ,σ2)

[X = x] =
exp

(
−(x−µ)2

2σ2

)
∑

y∈Z exp
(
−(y−µ)2

2σ2

) .
3.5 Differential Privacy
To reason about and bound privacy leakage in machine learning training algorithms, differential
privacy (DP) [8, 9, 11, 12] is the current gold standard and working definition of privacy:

(ϵ, δ)-DP: A randomized algorithm M : X 7→ Y satisfies (ϵ, δ)-DP if for any adjacent datasets
that differ by only one data record x, x′ ∈ X , some algorithm output S ⊂ Y the algorithm M satisfies

Pr[M(x) ∈ S] ≤ eϵ Pr
[
M
(
x′
)
∈ S

]
+ δ.

The ϵ is also known as the privacy budget, which quantifies the privacy leakage of the algorithm
M . When δ = 0, it is pure differential privacy (ϵ-DP). When δ > 0, it is approximated DP and it is
a common relaxation of pure DP.

Concentrated DP (CDP) [13, 3]: A randomized M : X 7→ Y satisfies 1
2ϵ

2-DP iff for any adjacent
datasets that differ by only the addition or removal of one data record x, x′ ∈ X , Dα(M(x)||M(x′)) ≤
1
2ϵ

2α, ∀α ∈ (1,∞), where Dα(·||·) is the Rényi divergence of order α, defined as Dα(P ||Q) =

1
α−1 log E

X←P

(
P (X)
Q(X)

)α−1
.

Theorem 1 (Privacy for Multivariate Discrete Gaussian [4]). Let σ > 0 and ε > 0. Let q : X → Zd

satisfy ∆2/σ2 ≤ ε2 for all x, x′ ∈ X differing on a single entry, ∆ = ||q(x) − q(x′)||2. Define a
randomized algorithm M : X n → Zd by M(x) = q(x) + Y where Yj ← NZ(0, σ

2) independently for
all j ∈ [d]. Then M satisfies 1

2ε
2-concentrated differential privacy.

4 Method
We present a secure multiparty computation protocol which allows a set of parties to efficiently
sample a hidden noise value from a distribution. For many distributions of interest in differential
privacy, sampling typically requires the computation of non-linear functions which are inefficient
in MPC. The key idea of our method is to construct statistically indistinguishable approximations
of target distributions which can be sampled via more efficient means. In particular, we design a
method for approximating distributions by a series of uniform random table lookups. We present
the overview of our method in Figure 1.

Section 4.1 shows how we can compose uniform table lookups to construct a statistically
indistinguishable approximation of any discrete probability distribution. Section 4.2 shows an
efficient multiparty computation protocol for sampling from these approximated distributions.
Section 4.3 discusses the application of our MPC noise sampler to differentially private collaborative
learning by way of the discrete Gaussian mechanism.

4.1 Approximating Distributions with Table Lookups
Section Outline. In a uniform table lookup, we fix a table of values and output an entry of the
table uniform randomly (Definition 1). This operation is equivalent to rolling a fair die, and can be
computed highly efficiently within an MPC protocol as we will see in Section 4.2. In this section, we
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show how we can approximate a sampling process for any discrete distribution of interest by using a
sequence of uniform random table lookups, and characterize a tradeoff between statistical distance
and number of tables.

To achieve this result, we begin with Algorithm 1 which approximates a target distribution using
a random single table lookup. Lemma 3 proves a relationship between approximation error and the
size of the table. With this as a building block, we then present Algorithm 4 which achieves a greatly
improved tradeoff via the composition of lookups from multiple smaller tables. Theorem 6 shows
that the statistical distance between the target and approximated distributions declines exponentially
as a function of the number of tables. We leverage this result to show statistical indistinguishability.

4.1.1 Approximation with One Table Lookup

While we use the term “table lookup” to evoke mechanical similarities between our method and other
cryptographic protocols, tables are highly general objects. While proving our theoretical results, we
will disambiguate using the term “die” which specifically indicates a probability distribution induced
by uniformly sampling entries from a table (Definition 1).

Definition 1. A die d is an n-sized array that encodes a finite discrete probability distribution. To
sample from the distribution that d encodes, we take i

$← [n], a uniform random sample over the
indices in the array, and output d[i], the ith element in the array. Thus the probability mass function
fd corresponding to d is precisely

fd(x) ≡
freqd(x)

n

where freqd(x) is a function that gives the number of times the element x appears in d.

We can construct a die to approximate any given discrete probability distribution. For example,
a sampling algorithm defined over 32-bit seeds can be perfectly encoded by a die with 232 faces.
Algorithm 1 formalizes a simple method for approximating distributions using single dice. We will
analyze it briefly and then iterate on this method to acquire finer approximations.

Algorithm 1 1DA (1-Die Approximation)
Input: A probability mass function f : R 7→ [0, 1] corresponding to a finite discrete probability

distribution; a die size n.
Output: A die d that approximates f .

1: d← an n-sized array, all elements initialized to ⊥.
2: for all x ∈ supp(f) do
3: t← ⌊f(x) · n⌋
4: find t entries of d that contain ⊥. Write x in these entries instead.
5: end for
6: return d.

Lemma 1. d = 1DA(f, n) is defined for arbitrary n > 0 ∈ N, and arbitrary probability mass
functions f with finite support.

Proof: To see this, observe that step 4 of Algorithm 1 will never fail to find t entries that contain
⊥. This is because by the definition of a discrete probability distribution,

∑
x∈supp(f) f(x) = 1 and

thus
∑

x∈supp(f)⌊f(x) · n⌋ ≤ n. The left hand side of the inequality describes the total number of ⊥
entries which must be overwritten, and n is the number of ⊥ entries when d is initialized. Since we
assume that f is supported on a finite set, we also know that the for loop will always terminate. □
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We measure the effectiveness of fd as an approximation for f by comparing the respective
probability masses allocated to elements of supp(f).

Definition 2. Given a target probability mass function f : R 7→ [0, 1] and an approximation
probability mass function g : R ∪ {⊥} 7→ [0, 1], the approximation error function ζ : R 7→ R is
defined

ζ(x) ≡ |f(x)− g(x)|.

When it is clear from context that the function g is constructed to approximate the function f , we
will also broaden this notation so that ζ(g) indicates the total additive error over the support of f .
Explicitly,

ζ(g) ≡
∑

x∈supp(f)

|f(x)− g(x)|.

While we define the error function ζ using an absolute value for intuition and compatibility with
statistical distance, we note that Algorithm 1 is constructed such that f(x) ≥ fd(x)∀x ∈ supp(f),
and both f and fd are always non-negative. Accordingly, we can ‘drop’ the absolute value in many
contexts. This is formalized in Fact 1.

Fact 1. For arbitrary d = 1DA(f, n) we have 0 ≤ fd(x) < f(x) for any x ∈ supp(f) since

fd(x) ≡
⌊f(x) · n⌋

n
≤ f(x)

and f(x) is always non-negative by the definition of a probability mass function. Consequently, we
can drop the absolute value when considering approximations made using Algorithm 1. Thus we have

ζ(fd) =
∑

x∈supp(f)

f(x)− fd(x).

We use the special element ⊥ to represent approximation error in d compared to the target
distribution. Note that for some choices of f and n, not all ⊥ entries will be overwritten in the die
returned by Algorithm 1. For example, if f is the pmf of a weighted coin with f(“Heads”) = 0.55
and f(“Tails”) = 0.45, then for d = 1DA(f, 2), we have that fd(“Heads”) = 0.5, fd(“Tails”) = 0, and
fd(⊥) = 0.5. Lemma 2 demonstrates the tight relationship between the number of entries with label
⊥ and the approximation error function ζ.

Lemma 2. Given d = 1DA(f, n) for an arbitrary integer n > 0 and an arbitrary probability mass
function f with finite support, the probability mass that fd allocates to ⊥ is equal to the total additive
approximation error of fd. That is,

fd(⊥) = ζ(fd).

Proof: By the construction of Algorithm 1, we know that n⊥, the number of entries in d with
label ⊥, is precisely defined by

n⊥ = n−
∑

x∈supp(f)

freqd(x)

8



where freqd(x) gives the number of times that x appears in the array d. Accordingly, we know that

fd(⊥) =
n⊥
n

by Definition 1

=
n−

∑
x∈supp(f) freqd(x)

n

=
n−

∑
x∈supp(f)⌊f(x) · n⌋

n
by Algorithm 1

= 1−
∑

x∈supp(f)

fd(x) by Definition 1

=
∑

x∈supp(f)

f(x)−
∑

x∈supp(f)

fd(x) by definition of pmf

= ζ(fd) by Fact 1.

□

Error Bound for 1-Die Approximations. Now we are ready to prove Lemma 3 which bounds
the total additive error when using Algorithm 1 to approximate an arbitrary discrete distribution
with finite support.

Lemma 3. Let f be a probability mass function whose support has at most n elements. Fix some
integer m > 1. Let d = 1DA(f,mn). Then we have

ζ(fd) <
1

m
.

Proof: We have

ζ(fd) =
∑

x∈supp(f)

f(x)− fd(x) by Fact 1

=
∑

x∈supp(f)

f(x)− ⌊f(x) ·mn⌋
mn

by Alg 1

=
∑

x∈supp(f)

f(x) ·mn− ⌊f(x) ·mn⌋
mn

<
∑

x∈supp(f)

1

mn
since ∀x ≥ 0 ∈ R, x− ⌊x⌋ < 1

≤ 1

m

where the last step follows since |supp(f)| ≤ n by our starting assumption. □
Lemma 3 implies that if we use a big enough table, we can achieve an approximation of any

discrete, finite probability mass function with arbitrarily small error. However, exploiting this bound
directly may require tables that are impractically large. We build on these results in the next section.

4.1.2 Approximating Distributions with Multiple Table Lookups

In this section we propose a method that composes several table lookups to achieve higher precision
with greatly reduced computational overhead. Similarly to the previous section, we begin with
a mathematical structure that precisely defines the usage of table lookups in a sampling process
(Definition 3).
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Definition 3. A Dice Ensemble D = (V,E) is a tree that encodes a discrete probability distribution
with finite support. Each vertex v ∈ V holds a die dv, which is an array whose entries are either
elements of a support set Sv ∪ {⊥} (where ⊥ is a special element used to represent error when
approximating a target distribution with support S), or a “placeholder” for another vertex u ∈ V . A
directed edge exists from v to u if and only if dv has a placeholder for u.

To sample from the probability distribution encoded by D, we use Algorithm 2. The probability
mass function of this distribution can be computed using Algorithm 3.

We note that while dice ensembles are defined as trees of dice, we only use unary ‘trees’ (i.e. each
node possessing at most one child) in the present study. We leave this generality in the definition as
it may allow for improved approximations via more complex decompositions of the target distribution
than that of Algorithm 4. We reserve this possibility for future work.

Algorithm 2 DE-Sample (Sampling from a Dice Ensemble)
Input: a die ensemble D = (V,E) with root vertex r
Output: an element from the set {⊥} ∪

⋃
v∈V Sv

1: X ← the set of leaves in V
2: while X ̸= {r} do
3: for all v ∈ X do
4: i

$← [nv] where nv is the number of entries in dv
5: s← dv[i]
6: for all incoming edge to v, (u, v) ∈ E do
7: replace each placeholder v on du with s
8: remove (u, v) from E
9: end for

10: remove v from V
11: end for
12: X ← the set of leaves in V
13: end while
14: i

$← [nr] where nr is the number of entries in the root die dr
15: return dr[i]

The sampling procedure Algorithm 2 rolls the dice at the leaves of the tree, putting the results
into the placeholder spaces in the dice of parent nodes. The leaves are then removed. This repeats
until only the root is left. Finally, the root die is rolled, and its output is the final result of the
sampling algorithm. Algorithm 3 produces a probability mass function by leveraging the fact that
the probability of obtaining a given value from any leaf vertex v is well defined (as it is simply a
die). Accordingly, the probability that a placeholder for v in a parent node takes a given value is
also well defined. Thus the iterative computation of probabilities from root to leaf described in the
algorithm suffices to find the probability mass function of the distribution.

In Algorithm 4, we compose table lookups to approximate a distribution with increasing precision.
For intuition, recall that in Algorithm 1, f(x) ≥ fd(x)∀x ∈ supp(f), and by Lemma 2, all of the
probability mass comprising the difference between f and fd is contained in entries of d that are
labeled with the error symbol ⊥. However, by construction of Algorithm 1, the gap between f(x) and
fd(x) is smaller than 1

T for all x ∈ supp(f), which means that allocating an additional face of d to
any x ∈ supp(f) would cause fd(x) > f(x), and there would be no guarantee that the approximation
error would decrease. However, if we divided up the mass from fd(⊥) into pieces smaller than 1

T , we
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Algorithm 3 DE-pmf (Probability Mass Function of a Dice Ensemble)
Input: a die ensemble D = (V,E) with root vertex r
Output: a a dictionary representing a probability mass function g supported on {⊥} ∪

⋃
v∈V Sv

1: g ← a dictionary with key set S ∪ {⊥}, values all initialized to 0
2: w ← a dictionary with key set V , values all initialized to 0
3: w[r]← 1
4: X ← {r}
5: while X ̸= ∅ do
6: X ′ ← ∅
7: for all v ∈ X do
8: for all i ∈ [0, |dv|] do
9: s← dv[i]

10: if s ∈ S ∪ {⊥} then
11: g[s]← g[s] + w[v] · 1

|dv |
12: else
13: w[s]← w[s] + 1

|dv |
14: end if
15: X ′ ← X ′ ∪ {children of v}
16: end for
17: end for
18: X ← X ′

19: end while
20: return g

could allocate it more productively to achieve a finer approximation. This will be our strategy in
Algorithm 4.

Specifically, we obtain finer and finer approximations of the target distribution by constructing a
1-die approximation of the error distribution di+1, and assigning entries of di labeled with ⊥ to take
its outputs. Functionally, if we take fDi to be the probability mass function of the dice ensemble in
the ith iteration of Algorithm 4, this splits the approximation error fDi(⊥) into pieces of size fDi

(⊥)
T i+1 ,

and allocates them to fill the gaps between the target pmf and the approximation. This brings fDi+1

closer to f . This intuition is formalized in the proof of Theorem 2, our key theoretical result.

Theorem 2. Let f be the probability mass function of an arbitrary discrete distribution with finite
support. Let D = DEA(f, ℓ) be a dice ensemble obtained from Algorithm 4, and fD be the probability
mass function of the corresponding distribution. Then we have∑

x∈supp(f)

|f(x)− fD(x)| < 2−ℓ.

The proof is deferred to Appendix A.1. Theorem 2 shows that if we use enough tables, we
can achieve an arbitrarily fine approximation of any discrete distribution with finite support.
Furthermore, the error between the approximated distribution and the target distribution given
as input declines exponentially with the number of tables. It follows as a corollary that they are
statistically indistinguishable when parameterized properly.
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Algorithm 4 DEA (Dice Ensemble Approximation of a Distribution)
Input: A probability mass function f : R 7→ [0, 1] corresponding to a finite discrete probability

distribution with |supp(f)| = n; a maximum number of dice ℓ
Output: a dice ensemble D that approximates f

1: initialize D = (V,E) with V,E empty sets
2: Err ← a dictionary whose keys are x ∈ supp(f), values initialized to f(x)
3: c← 1 {tracks error mass}
4: for all i ∈ [1, ℓ] do
5: di ← 1DA(Err, 2n)
6: for all x ∈ supp(f) do

7: Err[x]← Err[x]−
freqdi (x)

2n · c
8: end for
9: c← c ·

freqdi (⊥)
2n

10: Err[x]← Err[x]∑
x∈supp(f) Err[x] ∀x ∈ supp(f) {re-normalize the error}

11: vi ← vertex with di as its die
12: V ← V ∪ {vi}
13: if i ̸= 1 then
14: E ← E ∪ {(vi, vi−1)}
15: end if
16: if fdi(⊥) = 0 then
17: break
18: end if
19: if i < ℓ then
20: set all remaining entries of di with ⊥ to vi+1 instead
21: end if
22: end for
23: return D = (V,E)

12



4.1.3 Statistical Closeness to Input Distributions

In this section, we show that our constructed distributions are statistically indistinguishable from
the target distributions they mimic. We then use a hybrid argument to extend this result, showing
that any probabilistic algorithm which samples from an arbitrary discrete distribution X is statisti-
cally indistinguishable from an algorithm which uses our constructed distribution Y as a drop-in
replacement.

Corollary 1 (Statistical Indistinguishability of Target Distribution and Table Approximation.).
Consider an arbitrary discrete, finite random variable X with probability mass function f . Let
Y = (Yλ)λ∈N be a sequence of random variables parameterized by a statistical security parameter λ,
such that the probability mass function of Y (1λ) is given by fDλ

where Dλ = DEA(f, λ). Then Y is
statistically indistinguishable from X.

Proof: As an immediate consequence of Theorem 2 we have
∑

x∈supp(f) |f(x) − f ′(x)| ≤ 2−λ.
There is only one element in supp(f ′) that is not in supp(f), and that’s ⊥. So we have

SDX,Y (λ) =
1

2
·
∑

z∈{0,1}∗

∣∣∣Pr [X = z]− Pr
[
Y (1λ) = z

]∣∣∣
(by def of Statistical Distance)

=
1

2
·

fDλ
(⊥) +

∑
x∈supp(f)

|f(x)− fDλ
(x)|


=

1

2
· 2 ·

∑
x∈supp(f)

|f(x)− fDλ
(x)| by Lemma 2

≤ 2−λ by Theorem 2.

Thus the statistical distance between X and Y is bounded by a negligible function of λ. □
Corollary 1 shows that we can approximate any discrete distribution with finite support finely

enough to be indistinguishable using relatively few tables. To complement this result, we will define
a truncation scheme which enables us to construct a statistically indistinguishable finitized version
of any discrete distribution with a defined probability mass function in Algorithm 5.

Algorithm 5 Trunc (Statistically Close Truncation)
Input: f , the pmf of a discrete probability distribution; statistical security parameter λ
Output: f ′, a statistically close finitized pmf

1: supp(f ′)← ∅
2: Let (x0, x1, x2, ...) be a sequence of values in supp(f) such that f(xi) ≥ f(xi+1)∀i ∈ N.
3: i← 0
4: while 1

2 ·
(
1−

∑
x∈supp(f ′) f

′(x)
)
< 2−λ do

5: supp(f ′)← supp(f ′) ∪ {xi}
6: f ′(xi)← f(xi)
7: i← i+ 1
8: end while
9: return f ′

Algorithm 5 straightforwardly defines a truncated probability mass function f ′ by copying over
elements from f in descending order until the statistical distance between the two is underneath a
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threshold defined by an exponential function of λ. This trivially results in f ′ which is statistically
indistinguishable from f .

With Corollary 1 and Algorithm 5 together, we are ready to prove statistical indistinguishability
between the outputs of a probabilistic algorithm which uses constantly-many samples from an arbi-
trary discrete distribution X (possibly with infinite support), and the same algorithm which samples
from the MPC-efficient approximation given by DEA(Trunc(f, λ), λ) as a drop-in replacement.

Theorem 3. Consider an oracle O which outputs samples from a discrete distribution X. Consider
also a probabilistic algorithm A which takes a database as input, makes a constant number t ∈ N
of calls to O, and outputs a real number. Let O′ be an oracle which outputs samples from the
distribution defined by DEA(Trunc(f, λ), λ), where f is the probability mass function of X. Let A′
be a probabilistic algorithm that is exactly the same as A, except the oracle calls to O are replaced by
calls to O′.

Then the output distributions of A and A′ are statistically indistinguishable.

Proof: We proceed via a standard hybrid argument. Consider a sequence of hybrids H0, H1, ...,Ht, Ht+1, ...,H2t,
where H0 is the distribution defined by the original mechanism M , and each hybrid up to Ht replaces
a single call to O with a call to an oracle O′′ which samples from Trunc(f, λ), so that Ht is the same
as M except that all calls to O are replaced with calls to O′′. Further, let Ht+1 through H2t each
replace a call of O′′ with a call to O′, so that H2t is the distribution defined by the mechanism M ′.

By the construction of Algorithm 5, each adjacent pair of hybrids H i and H i+1 for i ∈ [0, t] are
statistically indistinguishable, and by Corollary 1 this also holds for i ∈ [t, 2t]. Further, the number
of hybrids is a constant with reference to the security parameter λ. Thus the sum of their statistical
distances is a negligible function of λ, and accordingly H0 is statistically indistinguishable from H2t.
□

Relationship to Differential Privacy Of particular interest to our desired use case, Theorem 3
implies that the chance that an adversary can distinguish between a differentially private mechanism
which uses our approximated distribution, and one that uses the original target distribution, is a
negligible function of λ. Accordingly, as long as λ is set high enough the two mechanisms should be
essentially interchangeable in practice. We note also that differentially private mechanisms are often
subjected to similar perturbations when translating theory to practice. Implementations on finite
computers are incapable of drawing from many theoretical distributions used routinely in differential
privacy. Instead, they implicitly draw from statistically close finitized approximations.

This means that we can utilize our MPC-friendly distributions to achieve improved efficiency
in differentially private collaborative learning applications. In the following section we detail our
protocol for sampling from these distributions within MPC.

4.2 MPC Protocol for Sampling
We realize the large table lookups by first generating encryptions of one-hot vectors and computing
a dot product of the table and the private one-hot vector. We first show how to generate the one-hot
vectors in the FABB-hybrid model (Figure 2). Then, we describe the protocol to sample from a
distribution using a chained table lookup.

The main idea behind generating one-hot vectors with minimal communication is to use the
boolean to bitwise encryption functionality from Figure 2 to obtain the bitwise encryptions of a
random value r ← [2ℓ]. Then, locally compute the encrypted one-hot vector such that it is zero
in all places other than r. For instance if we have a 2 − bit vector and the random bits sampled
are b0 = 0 and b1 = 1, then the one-hot vector can be generated as [b̄0b̄1, b0b̄1, b̄0b1, b0b1] = [0010].
Figure 3, describes the protocol in detail. Using the efficient one-hot vector generation protocol from
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Functionality FABB

This functionality operates over a finite field Zp (resp., F2) for arithmetic secret-shared values (resp.,
Boolean secret-shared values), and interacts with parties P1, . . . , Pn.

Random: Upon receiving (Random, type, id) from all parties where type ∈ {arith, bool} and id is a fresh
identifier, sample r ← Zp or r ← {0, 1} relying on type, store (id, type, r).

Boolean to Bitwise Encryption: Upon receiving (B2E, id, c0, c1, . . . , cl) from all parties, where
(id[i][j]) for i ∈ [0,M ] and j ∈ [0, ℓ] are present in memory, retrieve (id[i], bool,x[i]) for all i ∈ [0,M ]
and store (c0, c1, . . . , cl) where cj = [[x[0 . . .M ][j]]] for j ∈ [0, ℓ].

Encryption to Arithmetic shares: Upon receiving (E2A, id, id′) from all parties where (id, enc) is
present in memory, retrieve (id, enc, x) and store (id′, arith, x).

Output: Upon receiving (Output, Pi, type, id) from all parties, where (id, type) is present in memory,
retrieve (id, type, x) and then output it to Pi.

Figure 2: Functionality for the MPC black box.

Protocol Πone-hot

Input: Parties P1, . . . , Pn hold the following inputs:

• The set of public parameters pp for public-key BGV-THE.

• Pi holds a share of the secret key ski = si and the public key pk, M is the packing size.

• Size of the output vector 2ℓ.

Generation of M encrypted one-hot vectors:

1. All parties call the (Random) command of FABB to sample a vector of Boolean sharings ⟨R⟩b with
R ∈ {0, 1}ℓ∗M .

2. All parties call the (B2E, ⟨R⟩b) of the functionality FABB to obtain bit-wise ciphertexts c0 =
[[R[0 . . .M ][0]]], c1 = [[R[0 . . .M ][1]]], . . . , cl−1 = [[R[0 . . .M ][ℓ− 1]]], such that each encryption packs M
values.

3. All parties compute ĉi = [[1]]− ci, for all i ∈ [0, l − 1], where [[1]] is encryption of a vector of size M
with all 1 values.

4. Each party Pi sets starti = 2ℓ−log(n)+1 ∗ (i− 1) and endi = 2ℓ−log(n)+1 ∗ i.

5. Each party Pi computes [[Prod[j]]] =
∏

k∈[0,l−1]

{
ck if j[k] = 1

ĉk otherwise
for all j ∈ [starti, endi].

Output: Each party Pi outputs cj = [[Prod[j]]] for all j ∈ [starti, endi].

Figure 3: Protocol to obtain encrypted one-hot vector.

Figure 3, it is easy to see how we can instantiate a chained table lookup. At each level, we have a
table that uses the output from the previous level in some places. Since the parties have encryption
shares of the private value, they first aggregate this to get the encryption of the result of sampling
from the current table and they can use this ciphertext to locally compute the shares of the next
dot-product as described in Figure 4.

15



Implementation optimizations. The naive generation of the one-hot vector requires O(ℓ ∗ 2ℓ)
ciphertext-ciphertext multiplications. A simple way to reduce the computation per party is to divide
the computation of the one-hot vector among all parties. Thus, each party Pi computes only 2ℓ−log(n)

values in the one-hot vector between si = 2ℓ−logn+1(i− 1) and ei = 2ℓ−logn+1i. In Πnoise, we use the
same si and ei for Pi as Πone−hot.

Further, several intermediate products can be reused; thus, to minimize the computation overhead,
each party follows the steps below:

1. Compute the common product value to be used for all the indices among [si, ei), i.e., set common
places x = si ⊕ ei ⊕ (2ℓ−1). For all ones in x,

ccommon =
∏

k∈[0,l−1]


1 if x[k] ̸= 1

ck if si[k] = 1 and x[k] = 1

ĉk otherwise

This product can be computed as a reduction.

2. Each party starts with a two-dimensional array of ciphertexts denoted by V , where initially each
column V [i] has two ciphertexts ck, ĉk where x[k] = 0. If available, we multiply the first column
with ccommon.

3. Now similar to reduction, each party computes the tensor product of all the columns in V until
only two columns remain in V . Note that we can go up to a single column; however, it requires
the parties to store a much larger number of ciphertexts without any computational saving.

4. In steps 1c and 1d in Πnoise (Figure 4), the parties compute the corresponding ciphertext using
V .

The above steps help reduce the depth of ciphertext-ciphertext multiplications, thus reducing
the noise increase in the resulting ciphertext.

Implementation details. We implemented our secure noise sampling protocol using the
Func[ABB] (Figure 2) implementation from [17] which uses EMP-toolkit [31] and OpenFHE [2] as
MPC and FHE frameworks respectively. The key-setup process is identical to [17] where parties
generate their local secret keys and exchange the corresponding public keys, which are aggregated to
be the final global public key. This cost has been included in the evaluation.

Proof of security. The security of Πone−hot is intuitive because the parties do not communicate
with each other in the FABB-hybrid model. Similarly, in Πnoise, parties only send the encryption
shares of the dot product, which are indistinguishable from the encryption of random values given
the security of the THE scheme.

Proof of correctness. We give a brief intuition of the correctness proof here. First, given FABB

steps 1- 3, lead to all parties obtaining the encryption of uniformly random ℓM bits and the negation
of these bits. Step 5 computes the encryption of the one-hot vector values by computing the product
of the ciphertexts corresponding to the bit decomposition of each index. The underlying message is
1 iff the random bits equal that of the index. Thus, the Πone-hot results with each party Pi obtaining
encryptions of random one-hot vector values for indices between si, ei.

The protocol Πnoise involves obtaining the encrypted one-hot vector using Πone−hot and then
assuming a single table, we compute a dot product with the original table, thus given the randomness
of the one-hot vector, the samples are drawn from random indices. For chained table-lookup, in
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Protocol Πnoise

Inputs: Parties P1, . . . , Pn hold the following inputs:

• The set of public parameters pp for public-key BGV-THE.

• Pi holds a share of the secret key ski = si and the public key pk, M is the packing size.

• All parties hold tables T0, . . . , Tλ−1 of length 2ℓ. Ti for i ∈ [1, λ− 1] has public entries up to index xi

and Ti[j] = ⊥ for all j ∈ [xi, 2
ℓ − 1]. x0 := 2ℓ.

Generation of random samples:

1. For i ∈ [λ] all parties follow the steps below:

(a) All parties use Πone−hot to obtain the encryption of N one-hot vectors of length 2ℓ, such that Pj

obtains csj , . . . cej .

(b) Each party Pj computes cjp = Σ
k=ej
k=max(sj ,xi)

ck

(c) Each party Pj computes [[yji ]] = Σ
k=min xi,ej
k=sj

cjTi[j] + cjp[[yi+1]].

(d) All parties send [[yji ]] to P1. P1 computes [[yi]] = Σj=n
j=1 [[y

j
i ]] and sends it to all other parties.

2. All parties call (E2A, [[y0]]) of the functionality FABB obtain ⟨y⟩a.

Output: Each party outputs additive shares of M random noise samples ⟨y⟩a.

Figure 4: Protocol for distributed noise sampling.
steps 1c, we use the result from the previous iteration for the empty ⊥ values. Note that if the
number of tables is high, we must bootstrap the ciphertext to ensure correctness. In step 1d, parties
obtain the encryption of the random samples. In step 2, parties obtain the additive shares of the
random noise sample using encryption to shares functionality from FABB.

4.3 Application of discrete Gaussian generation: DP-CL
The proposed noise sampling in MPC method can be integrated with FL to achieve DP guarantees
under an honest-but-curious threat model. The clients follow the protocol to compute local gradient
updates and the server party will use secure MPC to aggregate all updates shared by the client
parties. The appropriate amount of noise is sampled and added inside the secure MPC protocol.
This noise is unknown to both the clients and the server. Hence there is no need to trust the clients
or the server or add additional noise due to potentially colluding clients. In this work, we primarily
consider applications like hospital collaboration where data point-level privacy shall be protected1.

Our proposed framework is built upon two prior works [14] (with data point-level DP) and [20]
(with client-level DP), which both use distributed DP. As shown in Algorithm 6 and Algorithm 7,
in this work, we replace the distributed noise with central noise sampled inside the secure MPC
protocol. We follow the same sampling and training process as in [14] to achieve data-point level
privacy protection: we assume there are N clients and the size of their local dataset Di is public.
They all agree on the set of hyperparameters for model training as well as privacy budget ϵ before
the training starts. For each communication round, all client parties are sampled to train and
share a model update. All clients use the same mini-batch subsampling rate to draw data points
for training their local model updates and each client computes, clips, and discretizes point-wise

1The proposed noise sampling protocol can also be used for client-level privacy protection, which is demonstrated
in Appendix D.
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gradient updates. The model updates are aggregated after each local training step. In addition, we
follow the conditional randomized rounding, flattening, and modular clipping steps, in [20]
to discretize the clients’ model updates before secure MPC protocol, as defined in Appendix C. In
addition, following the proofs in [20], we provide a similar utility and privacy analysis for our DP-CL
method in Appendix C. A more detailed version of the algorithms is provided in Appendix B.

By Theorem 1, one single communication round of Algorithm 6 and Algorithm 7 satisfy 1
2ϵ

2-
concentrated DP, with

∆2
2 = min

 c2 + 1
4γ

2d+
√
2 log(1/β) · γ ·

(
c+ 1

2γ
√
d
)
,(

c+ γ
√
d
)2

 ,

with ϵ = ∆
σ when sampling probability p = 1.0. We follow the same privacy accounting methods [13,

3, 27, 32] (to handle subsampling and composition) used in [20] for consistency.

Algorithm 6 Client Training Procedure
Input:

• the current model state W

• the loss function L

• the clipping norm, c

• the noise multiplier, σ

• the discretization granularity, γ

• the bias β

• the mini-batch sampling rate, p

• the private training data Di for client i,

• m for modulus operation

• Public uniformly random sign vector ξ ∈ {−1,+1}d

1: Sample mini-batch Bi ∈ Di with sampling probability p.
2: for all xb ∈ Bi do
3: gb ← ∇WL(W,xb) {compute example-wise gradient}
4: gb

′ ← 1
γ
(gb ·min{1, C

||gb||2
}) {clip and scale the gradient}

5: gb
′′ ← flatten(gb′, ξ)

6: g̃b = randomized round(gb′′) {condition on ||g̃b||2 ≤ min

{
c
γ
+
√
d,

√
c2

γ2 + 1
4
d+

√
2 log 1

β
· ( c

γ
+ 1

2

√
d)

}
}

7: end for
8: ∆Wi =

∑
b ḡb

9: output ∆Wi mod m for secure MPC

5 Empirical Evaluation
5.1 Summary of Evaluation
Below we summarize the key findings from our evaluation:
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Algorithm 7 Server Training Procedure
Input:

• the previous model state Wt−1

• the noise multiplier, σ

• the discretization granularity, γ

• m for modulus operation

• the client dataset sizes ||Di|| (assumed to be public).

• Public uniformly random sign vector ξ ∈ {−1,+1}d

• the models updates ∆W = ((
∑

i∆W ′i mod m) + (NZ(0, σ
2/γ2) mod m)) mod m via secure MPC

{this is equivalent to aggregating all scaled, flattened, and rounded gradient vectors: =
(∑B

b ḡb + (NZ(0, σ
2/γ2))

)
mod m}

1: Map ∆W to ∆W
′ ∈ [−m/2,m/2]d ∩ Zd {make ∆W

′mod m = ∆W}
2: ∆W = γ · unflatten(∆W

′
, ξ)

3: B = p ·
∑N

i ||Di|| {Calculate the overall mini-batch size }
4: output Wt = Wt−1+ optimizer(∆W/B)

• Our protocol achieves massive run time improvement when compared to prior state-of-the-art,
namely, 450× for 32 parties.

• For communication cost, we require significantly less communication compared to the prior work,
namely, 13× for 32 parties.

• The running time of our protocol is largely independent of the table size and statistical security
parameter dominates the cost the protocol.

• The DP-CL algorithm that samples and adds noise via an MPC protocol achieves better model
performance than algorithms that use distributed DP and need to add extra noise to account for
colluding clients.

5.2 Evaluation Setup
Secure sampling experiments setup. All experiments are conducted on AWS of instance type
m5.2xlarge. We benchmark our protocol for up to 32 parties to show the scalability of our protocol,
and to support future applications which may require generating DP noise over larger numbers of
parties. We consider the following network settings:

• LAN: Bandwidth of up to 1 Gbps and a latency of 0.1 ms.

• WAN: Bandwidth of up to 1 Gbps and a latency of 100 ms.

We compare our work with the prior state-of-the-art work by Wei et al. [34] for semi-honest security
and up to n−1 corruptions. For comparison, we benchmark their protocol2 using the GMW protocol
from MP-SPDZ for semi-honest security. Specifically, we use OT-based semi2k and HE-based temi

2https://github.com/yuchengxj/Secure-sampling-benchmark
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Figure 5: Comparison for different number of parties. Performance comparison for different
number of parties with table size 216 and statistical security parameter 64 in the LAN setting.

protocols from MPSPDZ to benchmark the prior work. All our experiments use bit-length equals 32
and statistical security parameter λ = 64 unless stated otherwise.

DP-CL experiments setup. To evaluate model utility, we simulate our DP-CL method for
training soft prompts and the classifier layers of RoBERTa-base models [23] using standard natural
language processing datasets SST2 [29], QQP [33], MNLI [35], and QNLI [30] from the GLUE
benchmark [30] following prior works on DP fine-tuning of language models [7]. For all experiments,
we simulate the distributed setting by splitting the dataset equally into 10 clients. Since we primarily
aim for applications like hospital collaborations, the number of clients is not too big and is comparable
to the numbers used in prior work [14]. Data point-level DP is considered and the δ value for DP
is set to be 1/||Dtrain||, where ||Dtrain|| is the size of aggregated training data (summation of all
clients’ local data). The code is implemented in PyTorch. We followed the implementations of prior
work [20] to discretize model gradients, simulate discrete Gaussian noise, and perform DP analysis.
More details about the hyperparameters for training and discretization are described in Table 4 and
Appendix E. All DP-CL experiments are conducted on NVIDIA A100 GPUs.

5.3 Efficiency of DP Noise Sampling
Scalability with number of parties. Figure 5 describes detailed performance of our protocol
for increasing number of parties with statistical security parameter 64. We observe that the time
decreases linearly up to 8 parties but increases for larger number of parties. This is because the
runtime can be broken into two parts: (A) interactive part (computing encrypted bits from random
boolean shares and additive shares of the output from its ciphertext), and (B) local computation
(one-hot vector generation and output value encryption) (see Section 4.2). The local computation is
parallelized across all parties, thus decreasing the runtime as the number of parties increases. At
greater than 8 parties, the interactive part begins to dominate the runtime, resulting in the trend
observed in Figure 5.
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Figure 6: Comparison for different table sizes. Performance comparison for different table sizes
for 8 parties with 64 statistical security parameter in the LAN setting.
Table 2: Performance for varying statistical security parameter (λ). These benchmarks are
for 16 parties when using tables of size 216 in the LAN setting.

λ Time (ms) Communication
(MB)

40 40.53 7.21
64 64.42 11.18
128 128.09 22.22

Scalability with size of table. Figure 6 shows the performance using 64 tables/statistical security
parameters and 8 parties. We note that communication is almost constant for any table size; this is
because only the initial step of converting random indices to their bitwise encryption depends on
the log of table size, and it is much smaller than the number of tables. As a result, communication
largely remains independent of table size. Additionally, we note that computation time remains
nearly constant with increasing table size. This is because most of the computation that depends on
table size can be parallelized. Thus, the statistical security parameter becomes the dominant factor
influencing performance.

Scalability with statistical security parameter. We benchmark the performance of our
protocol for varying statistical security parameter with 16 parties and table size 216 in Table 2.
As noted earlier the computation dependent on λ is not parallelized, thus we observe that the
performance depends linearly on λ. These experiments show that our method maintains efficiency
even at minuscule levels of statistical distance from the target distribution. Further, Figure 7
illustrates how table size varies with the standard deviation σ for the discrete Gaussian distribution.
We observe that for our CL benchmarks the table sizes are within the range of 212 to 216, thus
justifying our benchmark table sizes.
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Figure 7: Required table size vs standard deviation for the discrete Gaussian distribution.
Comparison with prior work. We show a detailed comparison of our work with the prior
state of the art for different numbers of parties in Table 1. As shown in the table our protocol
achieves significant improvement both in terms of the execution time and total communication
required. For instance, when using 16 parties, our protocol is up to 213× faster and requires 2.8×
less communication than prior work with HE-based protocol in the LAN setting. Note that we use
the worst-case communication; as in the chained table lookup, the intermediate results are only used
by a few parties; however, in our benchmarks, we send the intermediate results to all parties to keep
the result independent of the underlying distribution. We extrapolate the cost of the prior work for
the WAN setting based on the linear dependence of time vs latency as shown in Figure 9. Note that
we use the implementation3 for the prior work without any changes.

5.4 Model Utility Evaluation
CL with data point-level privacy guarantee by addition of centralized noise sampled in
secure MPC. As a baseline, we first evaluate DP-CL without any discretization; the additive
noise is continuous Gaussian sampled at the server side. We evaluate our method which discretizes
the clients’ gradient updates and adds the centralized discrete Gaussian noise as if it is sampled
from a secure MPC protocol. We additionally show two DP-CL scenarios where distributed noise is
added by the clients but with half of the clients or all but one client colluding. In our setup with 10
clients in total, those are equivalent to 5 and 9 colluding clients respectively. In those two cases,
each client samples noises as if only (10− num_colluding) client(s) will contribute to the additive
noise. That means, the total amount of noise added will be more than the amount of noise added
in the centralized case, which may degrade the model performance more. The results evaluated
on the SST2 dataset is plotted in Figure 8. We execute five runs for each experiment and include
the 95% confidence interval and the mean ± standard deviation (Table 5). With half of the clients
colluding, the final evaluation accuracy value is close to that of ours, but it converges more slowly
than ours. When 9 clients collude, the training converges significantly more slowly and the final

3https://github.com/yuchengxj/Secure-sampling-benchmark
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Figure 8: The convergence plots on SST2 dataset. Baseline shows the results for DP-FL
with central continuous Gaussian sampled at the server side (without discretization). For Ours,
we discretize the clients’ gradient updates and add the centralized discrete Gaussian noise as if it
is sampled from the secure MPC protocol. In addition, we show the performance of DP-FL with
distributed noises but with 5 or 9 out of 10 clients colluding. In such cases, each client samples
and adds noises as if only (10− num_colluding) client(s) will contribute to the additive noise. This
leads to more total noise added during the training than for the centralized case, which degrades
the model performance more. We run every experiment five times and plot the 95% confidence
interval. In the legend, we report the final evaluation accuracy values in the format of mean ± std.
In general, the cases with more colluding clients lead to lower evaluation accuracy values and slower
convergence. Ours has slightly slower convergence and final evaluation accuracy than those of the
Baseline method, but comparable.

evaluation accuracy is much lower than ours. A similar trend is observed for experiments on MNLI
datasets (see Figure 12 in Appendix F.2). For QQP and QNLI datasets, the proposed method
slightly outperforms the baseline, as shown in Figures 11 and 10. This is likely because our method
requires additional discretization steps, which should slightly degrade the model’s performance;
however, our method also uses discrete noise, which provides comparable or slightly better accuracy,
as noted in [4]. Depending on the relative contributions of these factors, and the stochasticity of
model training, our method may perform slightly better or worse than the baseline.

Overall, ours performs similarly to the baseline (the mean values are similar and the confidence
intervals overlap). On average, the method with 5 or 9 colluding parties performs worse than the
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Table 3: End-to-end accuracy improvement vs. computational overhead for DP collaborative learning
with 10 parties on 4 datasets. We show the improvement in mean model accuracy (∆ Acc) of our
method compared to distributed DP with noise calibrated to protect from 9 and 5 colluding clients
respectively (note that our method gives protection against all-but-one corruption, equivalent to
the 9 colluding case). We also report runtime (WAN setting) and communication overhead of MPC
noise sampling per training round.

Dataset ∆ Acc
(9 collude)

∆ Acc
(5 collude)

Time
(s/round)

Communication
(GB/round)

SST2 6.24 1.17 610 25.01
QNLI 3.04 0.51 666 27.29
MNLI 17.68 1.64 721 29.56
QQP 6.26 1.97 500 20.47

baseline or our method. This shows that by integrating DP collaborative ML training frameworks
into secure MPC protocols, there is little degradation compared to cases without secure MPC
protocols. By sampling noises in the secure MPC protocol, our method avoids adding additional
noises to account for colluding clients, which yields better model performance.

We summarize the utility evaluation and contextualize it with the overhead of MPC noise
sampling in Table 3. Our method provides protection against all-but-one corruption, which is
equivalent to the 9 colluding setting for the distributed DP experiments. MPC sampling allows us
to add less total noise to provide this level of protection. As a result, our method obtains large
to moderate accuracy gains over distributed DP with protection against 9 colluding parties (we
improve mean accuracy between 17.68% and 3.04%). By relaxing protections against colluding
parties, distributed DP can achieve accuracy closer to our method, as seen in the 5 colluding setting
experiments (we improve mean accuracy between 1.97% and 0.51%). While our sampling method
improves significantly on computational overhead compared to the previous work (Table 1), the
computational cost of MPC sampling aggregated over many model parameters remains substantial
(requiring 500-721 seconds and 20.47-29.56 GB communication per training round). Thus, while
our method achieves the highest level of accuracy and collusion protection, the accuracy/overhead
tradeoff is substantially better in settings that demand strict privacy guarantees against many
colluding parties. This underscores the importance of further improving the efficiency in future work,
to make MPC sampling practical in a wider range of contexts.

6 Conclusions
In this work, we proposed a novel method for MPC noise sampling, tailored for the collaborative
learning setting. Our method takes an arbitrary discrete distribution X as input, and finds a
statistically indistinguishable approximation of X which can be sampled via a series of table lookups.
This allows it to be sampled via our highly optimized protocol for uniform random table lookups in
the semi-honest model. This approach is a departure from previous methods for MPC noise sampling,
which work ‘top-down’ to adapt sampling algorithms for particular distributions of interest to the
MPC setting. Our ‘bottom-up’ design, which generically adapts distributions of interest so that they
are suitable for our MPC sampling method, results in improved efficiency and flexibility. Through
our experiments, we show that our novel protocol improves substantially in terms of runtime and
communication in comparison to prior works, especially at higher number of participating parties.
We provide proofs that the noise sampled using our protocol is statistically indistinguishable to
the distributions ingested as input. In addition, we conduct an end-to-end simulation of using the
proposed MPC noise sampling method in collaborative training.
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Limitations and Future Work. Our generic design pattern offers several opportunities for
extensions and additional applications.

• Security Model. It may be of interest to perform noise generation in the malicious security model
rather than semi-honest. Exploring application of malicious-secure MPC or zero-knowledge proof
methods (e.g. [36]) for table lookups is a promising area for future work.

• Continuous Distributions. Understanding how to apply our method to continuous noise distri-
butions may also be of interest. An idea similar to the snapping mechanism of [26] may provide
a general and theoretically sound way to make continuous noise distributions suitable for our
sampling method.

• Further Improvements to Overhead. While our sampling method improves computational costs
substantially compared to previous work, it still results in high runtime and communication per
training round. Further efficiency improvements are necessary to make MPC sampling practical
in many contexts. More precise theoretical tools for decomposing target distributions into table
lookups, and/or characterizing a relationship between approximation fineness and DP parameters
rather than using statistically indistinguishable noise, may enable construction of more efficient
samplers in future work.
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A Supplementary Methods
A.1 Proof of Main Theorem
Theorem 4 ((Reiteration of Main Theorem)). Let f be the probability mass function of an arbitrary
discrete distribution with finite support. Let D = DEA(f, ℓ) be a dice ensemble obtained from
Algorithm 4, and fD be the probability mass function of the corresponding distribution. Then we have∑

x∈supp(f)

|f(x)− fD(x)| < 2−ℓ.
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Proof:
Fix an arbitrary discrete distribution with finite support, and let f be its probability mass

function. Let (D1, D2, D3, ...) be a sequence of dice ensembles defined by Di := DEA(f, i), and let
fDi be the corresponding probability mass function of each. Let di := 1DA(Err, 2 · |supp(f)|) as in
line 5 of Algorithm 4 in its ith iteration, and let fdi be the corresponding probability mass function
of this die.

Define error mass functions fE1(x) := f(x) ∀x ∈ supp(f) and fEn(x) := f(x)−fDn−1(x) ∀n >
1 ∈ N. For any integer n > 0, define normalized forms of the error mass functions f̄En(x) :=

fEn (x)∑
x∈supp(f) fEn (x)

.

We begin the proof by pointing out two Facts which will be useful later.
Fact A: note that the following equality is implied by the construction of Algorithm 4

fDn(x) = fDn−1(x) + fDn−1(⊥) · fdn(x)

since for every die in the ensemble besides the one in the leaf node, the ⊥ symbols written on di−1
get replaced with placeholders for the result of rolling di.

Fact B: Observe that as in the corresponding Lemma 2 for 1-die approximations, the probability
mass occupied by ⊥ in the dice ensemble has a tight relationship with the error function fEn .

fDn−1(⊥) = 1−
∑

x∈supp(f)

fDn−1(x) by construction

=
∑

x∈supp(f)

f(x)−
∑

x∈supp(f)

fDn−1(x) since f is a pmf

=
∑

x∈supp(f)

f(x)− fDn−1(x)

=
∑

x∈supp(f)

fDn−1(x) + fEn(x)− fDn−1(x) by def of fEn

=
∑

x∈supp(f)

fEn(x).

Accordingly, we know that fEn (x)
fDn−1

(⊥) = f̄En(x).

Now we are ready to proceed to proving the desired result by induction.
The base case is given by

∑
x∈supp(f) f(x)− fD1 < 1

2 which follows directly by Lemma 3, since
D1 = d1 is a 1-die approximation of f(x).

For the inductive step, assume ∑
x∈supp(f)

f(x)− fDi−1 < 2−(i−1).

Fact C: This implies fDi−1(⊥) < 2−(i−1) by an argument trivially similar to Fact B.
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Then we have∑
x∈supp(f)

f(x)− fDi(x)

=
∑

x∈supp(f)

fDi−1(x) + fEi(x)− fDi(x) by def of fEi

=
∑

x∈supp(f)

fDi−1(x) + fEi(x)− (fDi−1(x) + fDi−1(⊥) · fdi(x))

by Fact A

=
∑

x∈supp(f)

fEi(x)− fDi−1(⊥) · fdi(x)

=
∑

x∈supp(f)

fDi−1(⊥) ·
fEi(x)

fDi−1(⊥)
− fDi−1(⊥) · fdi(x)

multiplying by 1

=
∑

x∈supp(f)

fDi−1(⊥) · f̄Ei(x)− fDi−1(⊥) · fdi(x)

by Fact B

= fDi−1(⊥)
∑

x∈supp(f)

f̄Ei(x)− fdi(x)

< fDi−1(⊥) ·
1

2
since di is a 1-die approx of f̄Ei by construction, and then by Lemma 3

< 2−(i−1) · 1
2

by inductive assumption and Fact C

= 2−i.

So the inductive step holds. □

B For per-data point privacy guarantee
Detailed training algorithm for the clients and server for data point-level privacy is outlined in
Algorithms 8 and 9. Each client has local dataset Di for i ∈ [N ] and the dataset sizes ||Di|| are
publicly known. The clients and the server agreed on the set of hyperparameters, e.g., the loss
function L, the clipping norm, c, the noise multiplier, σ, the discretization granularity, γ, the bias
for rounding, β, the mini-batch sampling rate, p, m for modulus operation. For each iteration, there
is a public uniformly random sign vector ξ ∈ {−1,+1}d useful for flattening the gradient vectors.

C Definition and Notation
We leverage the following definition from [20], which is originally designed for FL with distributed
DP guarantee. We also perform a similar utility and privacy analysis here for our centralized noise
addition inside secure MPC protocol. The differences are highlighted in red.

Definition 4 (Randomized Rounding [20]). Let γ > 0 and d ∈ N. Define Rγ : Rd → γZd (where
γZd := {(γz1, γz2, · · · , γzd) : z1, · · · , zd ∈ Z} ⊂ Rd) as follows. For x ∈ [0, γ]d, Rγ(x) is a product
distribution on {0, γ}d with mean x; that is, indepdently for each i ∈ [d], we have P[Rγ(x)i = 0] =
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Algorithm 8 Client Training Procedure (detailed)
Input:

• the current model state W

• the loss function L

• the clipping norm, c

• the noise multiplier, σ

• the discretization granularity, γ

• the bias β

• the mini-batch sampling rate, p

• the private training data Di for client i,

• m for modulus operation

• Public uniformly random sign vector ξ ∈ {−1,+1}d

1: Sample mini-batch Bi ∈ Di with sampling probability p.
2: for all xb ∈ Bi do
3: gb ← ∇WL(W,xb) {compute example-wise gradient}
4: gb

′ ← 1
γ
(gb ·min{1, C

||gb||2
}) {clip and scale the gradient}

5: gb
′′ ← HdDξgb

′ where H ∈ {−1/
√
d,+1/

√
d} is a Walsha-Hadamard matrix satisfying HTH = I and

Dξ ∈ {−1, 0,+1}d×d is a diagonal matrix with ξ on the diagonal {flatten the gradient}

6: repeat g̃b = randomized round(gb′′) until ||g̃b||2 ≤ min

{
c/γ+

√
d,
√

c2/γ2 + 1
4
d+

√
2 log 1/β · (c/γ + 1

2

√
d)

}
{rounding}

7: end for
8: ∆Wi =

∑
b ḡb

9: output ∆Wi mod m for secure MPC
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Algorithm 9 Server Training Procedure (detailed)
Input:

• the previous model state Wt−1

• the noise multiplier, σ

• the discretization granularity, γ

• m for modulus operation

• the client dataset sizes ||Di|| (assumed to be public). calculate the overall mini-batch size
B = p ·

∑N
i ||Di||

• Public uniformly random sign vector ξ ∈ {−1,+1}d

• the models updates ∆W = ((
∑

i∆W ′i mod m) + (NZ(0, σ
2/γ2) mod m)) mod m via secure MPC

{this is equivalent to aggregating all scaled, flattened, and rounded gradient vectors: =
(∑B

b ḡb + (NZ(0, σ
2/γ2))

)
mod m}

1: Map ∆W to ∆W
′ ∈ [−m/2,m/2]d ∩ Zd {∆W

′mod m = ∆W}
2: ∆W = γDξH

T
d ∆W

′

3: output Wt = Wt−1+ optimizer(∆W/B)

1−xi/γ and P[Rγ(x)i = γ] = xi/γ. In general, for x ∈ Rd, we have Rγ(x) = γ⌊x/γ⌋+Rγ(x−γ⌊x/γ⌋);
here γ⌊x/γ⌋ ∈ γZd is the point x rounded down coordinate-wise to the grid.

Definition 5 (Conditional Randomized rounding [20]). Let γ > 0 and d ∈ N and G ⊂ Rd. Define
RG

γ : Rd → γZd ∩ G to be Rγ conditioned on the output being in G. That is, P[RG
γ (x) = y] =

P[Rγ(x) = y]/P[Rγ(x) ∈ G] for all y ∈ γZd ∩G, where Rγ is as in Definition 4.

Proposition 5 (Randomized Rounding + Centralized Discrete Gaussian). Leveraging Proposition
26 in [20], the utility for our centralized discrete Gaussian is as follows, with the difference from [20]
which uses distributed discrete Gaussian noise highlighted in red:

Let β ∈ [0, 1), σ2 ≥ 1
2γ > 0, and c > 0. Let

∆2
2 := min

 c2 + 1
4γ

2d+
√
2 log(1/β) · γ ·

(
c+ 1

2γ
√
d
)
,(

c+ γ
√
d
)2

 ,

G :=
{
y ∈ Rd : ∥y∥22 ≤ ∆2

2

}
,

ε :=
∆2

σ
.

Let RG
γ be as in Definition 5. Define a randomized algorithm A : (Rd)n → γZd by

A(x) =

[
n∑
i

RG
γ

(
min

{
1,

c

∥xi∥2

}
· xi
)]

+ γ · Y , (1)

where Y ∈ Zd are independent random vectors with each entry drawn independently from NZ(0, σ
2/γ2).
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Then A satisfies 1
2ε

2-concentrated differential privacy. The DP guarantee follows from the
postprocessing property of DP and Proposition 5 and

Let x1, · · · , xn ∈ Rd with ∥xi∥2 ≤ c for all i ∈ [n]. Then the following hold.∥∥∥∥∥E [A(x)]−
n∑
i

xi

∥∥∥∥∥
2

≤ β · γ ·
√
d · n

1− β
.

E
[
∥A(x)− E [A(x)]∥22

]
≤ γ2 · d · n

4(1− β)
+ d · σ2.

E

∥∥∥∥∥A(x)−
n∑
i

xi

∥∥∥∥∥
2

2

 ≤ γ2 · d · n
4(1− β)

+

(
β

1− β
γ
√
dn

)2

+ d · σ2

∀t ∈ Rd E

[
exp

(〈
t, A(x)−

n∑
i

xi

〉)]
≤

exp
((

γ2

8 ·n+ σ2

2

)
· ∥t∥22

)
(1− β)n

.

Flattening [20] Since the inputs may be heavily concentrated on one coordinate. Hence, before
modular clipping, the input vectors shall be flattened by multiplying them with a random unitary
matrix or rotary U ∈ Rd×d, where U−1 = UT . U−1 is multiplied to undo this operation at the
end. Fix x ∈ R and i ∈ [d]. Then E

[
et(Ux)i

]
≤ et

2||x||22/2d, ∀t ∈ R and ∀i ∈ [d]. However, simply
using a unitary or rotary matrix here is not ideal due to several reasons. We followed the same
flattening procedure as proposed by [20]: let H ∈ {−

√
ρ/d,+

√
ρ/d} be a Walsha-Hadamard

matrix satisfying HTH = I, let ξ ∈ {−1,+1}d be the public uniformly random sign vector and
Dξ ∈ {−1, 0,+1}d×d is a diagonal matrix with ξ on the diagonal. Fix x ∈ R and i ∈ [d]. Flattening
is the operation y = HDξx, which has the desired utility guarantee: let Y = (HDξx)i ∈ R. Then
E
[
etY
]
≤ et

2||x||22ρ/2d, ∀t ∈ R. Optimality is attained when ρ = 1.

Definition 6 (Modular clipping [20]). For a < b, define M[a,b] : R→ [a, b] by M(x) = x+ (b− a) · n
where n ∈ Z is chosen so that x + (b − a) · n ∈ [a, b]. (Ties are broken arbitrarily.) We also
define M[a,b](x) = (M[a,b](x1),M[a,b](x2), · · · ,M[a,b](xd)) ∈ [a, b]d for x ∈ Rd. It has the property that
∀a < b ∀x, y ∈ R M[a,b](x+ y) = M[a,b](M[a,b](x) +M[a,b](y)).

Theorem 6 (Randomized rounding, flattening, modular clipping, and centralized discrete Gaussian).
Leveraging Theorem 36 in [20], the utility for our centralized discrete Gaussian is as follows, with the
difference from [20] which uses distributed discrete Gaussian noise highlighted in red: Let β ∈ [0, 1),
σ2 ≥ 1

2γ > 0, and c > 0. Let n, d ∈ N and ρ ≥ 1. Let U ∈ Rd×d be a random unitary matrix such
that

∀x ∈ Rd ∀i ∈ [d] ∀t ∈ R E [exp(t(Ux)i)] ≤ exp(t2ρ∥x∥22/2d).

Let

∆2
2 := min

 c2 + 1
4γ

2d+
√
2 log(1/β) · γ ·

(
c+ 1

2γ
√
d
)
,(

c+ γ
√
d
)2

 ,

G :=
{
y ∈ Rd : ∥y∥22 ≤ ∆2

2

}
,

ε :=
∆2

σ
.
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Let RG
γ be as in Definition 5. Let r > 0 and let M[−r,r] be as in Definition 6. Let A(x) be as defined

in Equation 1 We have

∥∥∥∥∥E [A(Ux)]−
n∑
i

xi

∥∥∥∥∥
2

≤ β · γ ·
√
d · n

1− β
.

E
[
∥A(Ux)− E [A(Ux)]∥22

]
≤ γ2 · d · n

4(1− β)
+ d · σ2.

E

∥∥∥∥∥A(Ux)− U
n∑
i

xi

∥∥∥∥∥
2

2

 ≤ γ2 · d · n
4(1− β)

+

(
β

1− β
γ
√
dn

)2

+ d · σ2

E

exp
t ·

(
A(Ux)− U

n∑
i

xi

)
j

 ≤ exp
((

γ2

8 ·n+ σ2

2

)
· t2
)

(1− β)n
,

∀t ∈ R ∀j ∈ [d]

E
[
exp

(
t · (A(Ux))j

)]
≤ exp

 t2ρ

2d

∥∥∥∥∥
n∑
i

xi

∥∥∥∥∥
2

2


·
exp

((
γ2

8 ·n+ σ2

2

)
· t2
)

(1− β)n

∀t ∈ R ∀j ∈ [d].

Define a randomized algorithm Ã : (Rd)n → γZd by

Ã(x) = UTM[−r,r]

((
n∑
i

RG
γ

(
min

{
1,

c

∥xi∥2

}
· Uxi

))
+ γ · Y

)
, (2)

where Y ∈ Zd are independent random vectors with each entry drawn independently from NZ(0, σ
2/γ2).

Then Ã satisfies 1
2ε

2-concentrated differential privacy.
Let x1, · · · , xn ∈ Rd with ∥xi∥2 ≤ c for all i ∈ [n]. Let

σ̂2(x) :=
ρ

d

∥∥∥∥∥
n∑
i

xi

∥∥∥∥∥
2

2

+

(
γ2

4
+ σ2

)
· n ≤ ρ

d
c2n2 +

(
γ2

4
·n+ σ2

)
(3)

If σ̂2(x) ≤ r2, then

E

∥∥∥∥∥Ã(x)−
n∑
i

xi

∥∥∥∥∥
2

2

 (4)

≤ d · n
1− β

·

(
2
√
2 · r · e−r2/4σ̂2(x)√
n · (1− β)n−1

+

√
γ2

4
+

β2γ2n

1− β
+

(1− β)σ2

n

)2

. (5)
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Algorithm 10 Client Training Procedure
Input:

• the current model state W

• the loss function L

• the clipping norm, c

• the noise multiplier, σ

• the discretization granularity, γ

• the bias β

• the private training data Di for client i,

• m for modulus operation

• Public uniformly random sign vector ξ ∈ {−1,+1}d

1: gi ← local model update on local data Di

2: gi
′ ← 1

γ (gi ·min{1, c
||gi||2 }) {clip and scale the gradient}

3: gi
′′ ← HdDξgi

′ where H ∈ {−1/
√
d,+1/

√
d} is a Walsha-Hadamard matrix satisfying HTH = I

and Dξ ∈ {−1, 0,+1}d×d is a diagonal matrix with ξ on the diagonal {flatten the gradient}

4: repeat g̃i = randomized round(gi′′) until ||g̃i||2 ≤ min

{
c/γ +

√
d,
√

c2/γ2 + 1
4
d+

√
2 log 1/β · (c/γ + 1

2

√
d)

}
5: ∆Wi =

∑
b ḡi

6: output ∆Wi mod m for secure MPC
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D For per-client privacy guarantee
To leverage the centralized noise sampling method for client-level privacy guarantee, one can follow
Algorithms 10 and 11, which is equivalent replacing the distributed noise with centralized noise
of the main algorithm in [20]. The utility analysis for the Algorithms 10 and 11 is the same as
described in Appendix C, where n here represents the number of clients that aggregate the client
updates, instead of the aggregate mini-batch sizes.

Algorithm 11 Server Training Procedure
Input:

• the previous model state Wt−1

• the number of clients in this training run n_clients

• the noise multiplier, σ

• the discretization granularity, γ

• m for modulus operation

• Public uniformly random sign vector ξ ∈ {−1,+1}d

• the models updates ∆W = ((
∑

i∆W ′i mod m) + (NZ(0, σ
2/γ2) mod m)) mod m via secure MPC

1: Map ∆W to ∆W
′ ∈ [−m/2,m/2]d ∩ Zd {∆W

′mod m = ∆W}
2: ∆W = γDξH

T
d ∆W

′

3: output Wt = Wt−1+ optimizer(∆W/n_clients)

E Additional Experimental Setup
In this work, we closely followed the algorithms and notations in [20] to scale, flatten, round, and
modular clip the gradients update produced by each participants. For each vector x ∈ Rd, d ∈ N to
be discretized, let γ > 0 be the granularity for discretization. We use the default values as in [20]:
the bias β = e−1/2, range for modular clipping m = 216 (i.e., 16 bits); for a fixed number of bits
(n_bits), we use the heuristics to choose the discretization granularity γ by making sure the range
m includes k standard deviations of (

∑B
b ḡb) + Y , i.e., that 2kσ̂ ≤ 2n_bits · γ (ḡb, γ, B and Y are

as defined in Algorithms 6 and 7), where σ̂2 = 1
dc

2B2 +
(
γ2

4 ·B + σ2
)
. k = 4 is used in all our

experiments. This is similar to the one described in [20] with the difference highlighted in red. We
use similar hyperparameters for FL with data point-level privacy protection (Section 5.2) as prior
work on DP fine-tuning soft prompts [7], as summarized in Table 4.

F Additional Experiments
F.1 Latency Dependence for Prior Work
We benchmark the cost of prior work for four parties for different latency settings and a bandwidth
up to 1 Gbps as shown in Figure 9.

F.2 DP-FL additional experiments
Additional experimental results on QNLI, QQP, and MNLI are shown in Figures 10, 11, and 12
respectively. The experiments are conducted for five runs in each case. The final accuracy scores
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Table 4: Hyperparameters for the experiments. All experiments use 10 clients. The datasets
are equally splitted to simulate the local data of the clients. RoBERTa-base model is used for all
experiments. The soft prompts and the classifier layers of the models are fine-tuned while all other
parameters are frozen during the training. BS is the aggregate batch size (i.e., B =

∑
iBi from

Algorithm 7). LR is the learning rate. ϵ is the privacy budget. Grad is the maximum gradient norm
c as defined in Algorithm 6. p-len is the length of the soft prompts.

data model BS LR ϵ Grad Epochs p-len
sst2 base 900 0.05 8.0 0.01 21 9

QNLI base 1050 0.005 8.0 0.05 100 10
QQP base 1050 0.05 8.0 0.1 10 7
MNLI base 1050 0.005 8.0 0.05 60 10
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1000

1500

2000

Ti
m
e 
(s
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Figure 9: Latency vs Time for [34]. Performance of prior work for standard deviation 967 with
4 parties and a bandwidth of up to 1 Gbps.

(mean ± std) are shown in Table 5.
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Table 5: Summary of evaluation accuracy values (%). All experiments are run five times. We
report the mean ± standard deviation.

data Baseline Ours 5 colluding 9 colluding
sst2 90.37± 0.56 89.68± 0.85 88.51± 1.18 83.44± 0.50

QNLI 81.95± 0.75 82.37± 0.37 81.86± 0.37 79.33± 0.52

QQP 76.34± 0.50 77.31± 0.84 75.34± 0.89 71.05± 3.17

MNLI 73.63± 0.71 73.60± 0.49 71.96± 0.68 55.92± 4.25
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Figure 10: The convergence plots on QNLI dataset. This is a reproduction of Figure 8 using
QNLI dataset with five training runs for each of the four cases.
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Figure 11: The convergence plots on QQP dataset. This is a reproduction of Figure 8 using
QQP dataset with five training runs for each of the four cases.
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Figure 12: The convergence plots on MNLI dataset. This is a reproduction of Figure 8 using
MNLI dataset with five training runs for each of the four cases.

38


	Introduction
	Background
	Noise Sampling for Differentially Private Collaborative Learning
	Differentially Private Collaborative Learning Algorithms
	DP Fine-Tuning for Soft Prompts

	Preliminaries & Notation
	Secure Multiparty Computation
	Representing Approximation Error in Constructed Distributions
	Statistical Indistinguishability
	Discrete Gaussian Distribution
	Differential Privacy

	Method
	Approximating Distributions with Table Lookups
	Approximation with One Table Lookup
	Approximating Distributions with Multiple Table Lookups
	Statistical Closeness to Input Distributions

	MPC Protocol for Sampling
	Application of discrete Gaussian generation: DP-CL

	Empirical Evaluation
	Summary of Evaluation
	Evaluation Setup
	Efficiency of DP Noise Sampling
	Model Utility Evaluation

	Conclusions
	Supplementary Methods
	Proof of Main Theorem

	For per-data point privacy guarantee
	Definition and Notation
	For per-client privacy guarantee
	Additional Experimental Setup
	Additional Experiments
	Latency Dependence for Prior Work
	DP-FL additional experiments


